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The critical behavior of the weak-field Hall effect near a percolation threshold 
is studied with the help of two discrete random network models. Many finite 
realizations of such networks at the percolation threshold are produced and 
solved to yield the potentials at all sites. A new algorithm for doing that was 
developed that is based on the transfer matrix method. The site potentials are 
used to calculate the bulk effective Hall conductivity and Hall coefficient, as well 
as some other properties, such as the Ohmic conductivity, the size of the back- 
bone, and the number of binodes. Scaling behavior for these quantities as power 
laws of the network size is determined and values of the critical exponents are 
found. 

KEY WORDS: Hall effect; percolation; network models; transfer matrix 
algorithm; duality. 

1. I N T R O D U C T I O N  

In te res t  in the  cr i t ical  b e h a v i o r  of  the  H a l l  effect n e a r  a m e t a l - i n s u l a t o r  

t r an s i t i on  of  the  p e r c o l a t i v e  type  d e v e l o p e d  r a t h e r  s lowly  after  the  early,  

p i o n e e r i n g  t heo re t i c a l  w o r k  of  J u r e t s c h k e  e ta l .  (1) This  g r a d u a l  d e v e l o p -  
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ment included an effective medium theory, (2) early attempts at simulations 
of random network models, (3) a links-nodes picture of the Hall effect, (4) 
and exact treatments of a Cayley-tree network (s) and of two-dimensional 
systems. (11 It has culminated in recent years in the development of a full- 
fledged scaling theory for the critical behavior of the Hall effect near the 
percolation threshold pc,  (6) and the discovery of a reliable network model 
and of an efficient method for calculating the Hall conductivity from 
simulations of this model. (7~ Preliminary values calculated in this way for 
the critical exponents, (8) as well as some predictions of the scaling theory, (6) 
have recently been dramatically verified in two beautiful experiments. (9'1~ 

In this article we describe detailed calculations that have been perfor- 
med to simulate the low-field Hall effect at the percolation threshold in 
randomly diluted network models of finite size L. Two different models 
were used--we started out with the model of ref. 7, but in the course of the 
work we discovered a new model, which is better in some respects. Results 
from both models will be presented. The method used to calculate the Hall 
conductivity required us to find the detailed current distribution on all the 
current-carrying bonds of the network. We developed a new method for 
doing this which .is based on the transfer matrix approach of Derrida and 
Vannimenus. (11) The current distributions produced by this method can 
also be used for detailed investigations of the statistical properties of these 
distributions and their various moments. (12~ The method, which is more 
precise than relaxation calculations and much more efficient than a direct 
solution of Kirchhoff's equations by matrix inversion, is described in detail 
here for the first time. The calculations reported here were performed 
entirely on samples of cubic shape L x L x L. The scaling behavior as a 
power of L was determined from these simulations for the bulk effective 
Ohmic and Hall conductivities ae and 2e, as well as for the bulk effective 
Hall coefficient Re-=~e/(H~r2). Using known values for the correlation 
length exponent v, we then obtained values for the Ohmic exponent t and 
for the Hall exponents z and g, 

~e ~ AP z 

2 e ~ A p  ~ (1.1) 

R~ ~ A p - e  

where 

Ap =- p - p c ,  g =  2 t -  r 

From our simulations we also determined two geometrical quantities, 
the size NB of the percolating backbone at Pc, and the density of binodes 
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NBN in the model of ref. 7: In that model each sample consists of four elec- 
trically unconnected networks that nevertheless intersect each other. The 
points of intersection between two backbones are called binodes. For  these 
two numbers we also found an asymptotic power law dependence on L 
which is characterized by exponents which have the significance of fractal 
dimensions 

N e  ~ L 19~, NBN ~ L D~N (1.2) 

The remainder of this article is organized as follows. 
In Section 2, we review the theory of the low-field Hall effect in macro- 

scopically inhomogeneous conductors and describe the two discrete 
network models that we used in order to simulate such a medium near a 
percolation threshold. In Section 3, we describe our transfer matrix algo- 
rithm for calculating the detailed current distribution in a random-resistor 
network. In Section 4, we present the results of our simulations and the 
values obtained for the critical exponents t, z, g, De,  and DBN. In 
Section 5, we discuss the significance of these results, compare them to 
other calculations, and indicate possible directions for future research. 

2. T H E  BASIC  C O N T I N U U M  T H E O R Y  A N D  T H E  
D I S C R E T E  M O D E L S  

The Hall effect in a homogeneous continuum conductor appears as an 
antisymmetric part of the conductivity tensor. The Hall current density can 
thus be represented as a vector product k x E, where E = -Vq~ is the elec- 
tric field and 121 is the local Hall conductivity. For a conductor in which 
the conductivity tensor is isotropic in zero magnetic field H = 0 ,  ;~ is 
parallel to H. When H is small enough, ~ is simply proportional to H and 
the ohmic conductivity ~ is a scalar, where "small enough" means 121 ~ ~r. 
The total current density at any point of the composite medium is then 
given by 

J(r)  = o-(r) E(r)  - ~(r)  x E(r)  (2.1) 

where both a(r) and the magnitude and sign (but not the direction) of ~,(r) 
have a fixed (but different) value in each component. The direction of ~(r) 
is always either parallel or antiparallel to H. Although both a and 2 have 
a simple dependence on H when 2 <~ a, namely, cr ~ H ~ and 2 ~ H 1, if we 
try to analyze the H dependence of J we must not forget that the electric 
field E now also depends on H. We can write E as an expansion in powers 
of H, keeping terms up to order HI,  

E = E o + E I +  ... 
(2.2) 

Eo ~ H ~ E1 ~ H 1, etc. 
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The bulk effective conductivities ~e and s of the composite conductor 
are defined by writing an expression like (2.1) for the volume averages of 
J and E, 

( J >  = ~ e < E > - Z e •  < E)  (2.3) 

where the Ohmic conductivity 6~ is, in general, a symmetric tensor inde- 
pendent of H, while the Hall conductivity Xe is a vector that is linear and 
homogeneous in the components of H but may point in a different direc- 
tion. When the boundary conditions are such that the electric field would 
be uniform (and consequently also independent of H), E ( r ) - E 0 o ( r )  if 
the medium were homogeneous, it is not difficult to show that (see 
Appendix A) 

<E)  = <Eo> =Eoo 

<El> = <E2) . . . . .  0 
(2.4) 

Substituting (2.1) in (2.3) and expanding both sides in powers of H, it is 
then possible to obtain the following expressions for ~e and 2e (this is 
shown for a special case in ref. 7, while a general derivation appears in 
Appendix A of the present article) 

�9 L f 
E(o~ )~ ~e 00 -- VJ  dV o-(r) E(0e)(r) �9 E(of)(r) 

I f  dVa( r )  E(oe)(r) �9 ~'(:) = ~00 (2.5) 

~e ~ (w(e)  ~ ]rrr~(f)] --  1 f ~oo  ~ ~oo~ - ~ dVX(r) .  [E~o~)(r) • E~of)(r)] (2.6) 

The upper index which appears in the electric fields here refers to the 
boundary conditions: E(oe)(r) is calculated for boundary conditions such 
that the average or uniform field E(o~ ) is in the direction of the unit vector 
e. In fact, for convenience we will usually normalize these boundary condi- 
tions so that E L  ) =e.  While (2.5) is a standard expression, an expression 
like (2.6) first appeared in ref. 7. We note that in order to use (2.6), there 
is no need to calculate any corrections to Eo due to the presence of a non- 
zero H--a l l  we need is to calculate Eo(r ) (i.e., at H = 0 )  in the same 
material for two different sets of boundary conditions, e.g., such that the 
average field Eoo is in the x and y directions. 

One can eliminate the subvolume of one of the components from the 
integration in both (2.5) and (2.6). In the case of a two-component com- 
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posite with either isotropic or cubic point symmetry these expressions can 
then be simplified to (see Appendix A) 

O'e -  O" 2 
5. f dV[E~o~)(r) �9 G ]  (2.7) 

0"1 - -  i f2  V ' J r  �9 ffl 

R e - -  2 2 1 ~ (x) (y) 
21__22 j/ .  dr dV(E0 x E o  )z (2.8) 

�9 ffl 

where we have taken E(0~)= ex and E(o~ )= ey, i.e., unit vectors along two 
coordinate axes. We note that the right-hand side (rhs) of (2.8) is inde- 
pendent of the Hall conductivities. 

In the special case of a two-dimensional (2D), two-component com- 
posite with H perpendicular to the plane of the sample, the rhs of (2.8) can 
be calculated explicitly in terms of ae, 

2 
2e - -  22 O'e -- a2 in 2D (2.9) 
21 __22 2 O" 1 - -  0 . 2  

This result is obtained by using the duality transformation which in a 2D 
system relates the local field Eo(r ) of the original problem to the local field 
in another problem, in which the full local conductivity tensor is replaced 
everywhere by its inverse (see Appendix C). Among other things, (2.9) 
enables us to derive the critical behavior of 2e near a percolation threshold 
from that of ~re, as had already been done using other means. (4) Thus, when 
component 2 is a perfect insulator, rr 2 = 22--0, (2.9) entails 

2e (0"e~ 2 
)~ = \ ~ /  ~ (Pl -- Pc) 2' in 2D (2.10) 

when the volume fraction Pl of the conducting component is above but 
close to the percolation threshold Pc. 

More generally, including 2D as well as 3D metal-insulator com- 
posites, we expect to find 

2e r ~ ( P l - P c )  for pl>Pc (2.11) 

The Hall coefficient R is given at low fields by 

R = 2/(Ha 2) (2.12) 

and consequently we expect to find in the same regime 

R----~(pl-p, ) g, g = 2 t - r  (2.13) 
R1 
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From (2.10) we see that g = 0 (Re remains finite) in 2D. Early simulations 
of three-dimensional (3D) percolating systems (8) as well as the links-nodes 
picture (4) indicated that g is between 0.3 and 0.5, i.e., R e diverges. This is 
also supported by preliminary experiments. (9'1~ 

The discussion of critical behavior can be extended to values of Pl 
below Pc if component 2 is a poor conductor (i.e., 0"240" 1 and 22~,~1) 
rather than a perfect insulator. A scaling theory was constructed to 
describe this situation, (6) and one result of that theory is that when 
A p - p c - p l  is sufficiently small, the good conductor will dominate the 
Hall effect even below Pc. Specifically, if 

(2.14t 
R2 ~2 \~ 

then the Hall coefficient of the composite below Pc should have the same 
critical behavior as given by (2.13) above Pc, though possibly with a dif- 
ferent proportionality coefficient. This prediction is tested in some of our 
simulations described in Section 4, and used to accumulate better statistics 
for evaluating the critical exponent g in one of the models. 

In order to calculate 2e for a 3D composite, one needs to know the 
two fields E(o x) and E(o y). For  a disordered continuum composite medium 
near a percolation threshold this is an impossible task. The traditional 
approach has therefore been to approximate such a medium by a perco- 
lating discrete network model, counting upon universality to ensure that 
the critical exponents, at least, will not be affected. If we try to discretize 
a continuum system by laying upon it a regular grid of sites and bonds, it 
is quite natural to assign a potential to each site and a current to each 
bond. The Ohmic portion of the current Ia through a bond a, corresponding 
to the first term of (2.1), is then naturally given by the product ga Va, where 
Va is the voltage (potential difference) across a and ga is its conductance. 
To calculate the Hall portion of this discretized current, corresponding to 
the second term of (2.1), we first need to discretize the components of E 
that are perpendicular to a. This can only be done by using the voltages V~ 
across other bonds a that are perpendicular to a. We thus arrive at the 
following ansatz as the discretized version of (2.1): 

Ia=g~,V,,- ~ 2aaVa(eH,.~,a) (2.15) 
~ a  

where the sum is over a set of bonds ~ that are close to a in some sense, 
and where the triple scalar product of unit vectors along H, a, a ensures the 
proper dependence on the directions of the fields. The precise dependence 
of the Hall conductance parameter 2aa on the bond pair a, a may be chosen 
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in different ways, and different choices may lead to different types of 
discrete models for the Hall effect. 

The choice of a network model  that  is appropr ia te  for the Hall effect 
has turned out  to be rather tricky, in contrast  to the ease with which such 
models have been constructed for representing the Ohmic  conductivity. In 
particular, the model  used in ref. 3, which allows a Hall current to flow in 
a conduct ing bond  as a result of a nonzero  field which appears across a 
neighboring perpendicular  bond  even when that  bond  is an insulator, leads 
to incorrect behavior  even in the 2D case, where we should get the exact 
result of (2.9). (8! This failure could be traced to the fact that  the random-  
resistor networks that  implemented that model in 2D were not  self-dual, in 
contrast  with con t inuum 2D systems, which are always self-dual (i.e., their 
microgeometry  does not  change under  the duality transformation).  To 
avoid these problems, a class of models was introduced where the basic 
element is either a pair  (in 2D)  or triplet (in 3D) of identical mutual ly 
perpendicular  bonds, which represent electrically unconnected Ohmic  con- 
ductors  when H = 0  (see Fig. 1). (7) When H r  a Hall current can flow in 
each of these bonds as a result of  a nonzero  voltage on one of the others, 

g,X 

(a) 

(b) 

Fig. 1. (a) The basic unit element of two identical, perpendicular, and electrically unconnec- 
ted conductors and the square-centered, self-dual, 2D network constructed from it. The elec- 
trical connections or nodes are marked by black circles. The nodes marked a and the nodes 
marked b form two unconnected, but strongly correlated, simple-square, random-bond 
networks. (b)The basic unit element of three identical, perpendicular, and unconnected 
conductors and the fcc 3D network constructed from it. The nodes marked a-d form four 
electrically unconnected, correlated, simple-cubic, random-bond networks. 
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when H has a component that is perpendicular to both bonds. We will call 
these the class 1 models. When 2D random networks were constructed 
from these elements they had the expected behavior, including being self- 
dual. The more interesting 3D case requires simulations of large-scale 
networks where the voltages on all the bonds must be calculated. In the 
following section we describe a new method that was developed for doing 
that. 

The class 1 models have one glaring unphysical aspect--they always 
result in networks that split up into two or more unconnected pieces that 
occupy the same region of space. (7'8) This is especially annoying in the case 
of diluted networks just above the percolation threshold. In that case, each 
of these unconnected networks has its own percolating cluster and back- 
bone, consistifig of nodes, links, and blobs, and these govern the Ohmic 
behavior when H =  0. When H r  0, contributions to the macroscopic Hall 
effect come only from locations where bonds from different, unconnected 
backbones intersect without making electrical contact - -by belonging to the 
same basic element. These backbone crossings, which we shall call binodes, 
occur at random locations which are not necessarily near the nodes, and 
they have no analogue in a real percolating continuum system. 

In order to avoid this unphysical feature, we now introduce a new 
class of models, called class 2, which is a variant of the unacceptable model 
of ref. 3. In this variant we take a single connected network of the simple 
square or cubic type and define the electric field in a direction 8 per- 
pendicular to a given bond a to be a weighted average over the voltages on 
the four bonds in direction ~ that are nearest neighbors to a (see Fig. 2). 
The weight of each of these bonds is 1/4 if it is of the same type as a and 

N 

0 2 

Cl 3 

(3 
Cl I 

O4 

Fig. 2. Planar section of a simple square or simple cubic network showing all the bonds fi 
that determine the component  of the electric field Ea• that is in the plane and perpendicular 
to the bond a. In the model of ref. 3, Ea• is the simple arithmetic average of all four Vjs. In 
our class 2 models, Ea• is the weighted average of these V~'s, where the weight is 1/4 if the 
bond fit is of the same type as a and 0 otherwise. 
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0 otherwise. In this class of models an electric field in one component 
cannot produce a Hall current in another component, thus correcting a 
major flaw in the model of ref. 3. They also avoid the unphysical 
appearance of binodes which are so crucial in the class 1 models. 
Moreover, even though the class 2 networks are usually not self-dual in 
their 2D implementations, the important equality (2.9) can be shown to 
hold exactly in the weak-field case for such networks of arbitrary size and 
structure (see Appendix C). We conclude that this is an acceptable model 
for representing the weak-field Hall effect in 2D, and we can expect it to 
be a good model to use also in 3D simulations. 

The simulations were performed on random-resistor-network models 
of both classes 1 and 2. The technique in both cases was to find the detailed 
voltage distribution on all the bonds of the percolating backbones when 
H = 0 ,  and then use the discrete analogue of (2.8) in order to find 
( ) ,e-  22)/(21 - 2 2 )  for or2 <~ a~. The derivation of the necessary formulas was 
done in ref. 7 for the class 1 models. In Appendix B this is reviewed and 
generalized to apply also to the class 2 models. In the following section, we 
describe the novel algorithm that we developed in order to calculate the 
voltages on all the current-carrying bonds of the network. 

3. N E W  M E T H O D S  FOR C A L C U L A T I N G  ALL THE B O N D  
V O L T A G E S  IN A R A N D O M - R E S I S T O R  N E T W O R K  

Calculation of the bulk effective Hall conductivity 2 e using the discrete 
network analogue of (2.8) [see (B.16)] requires knowledge of the voltages 
on each bond belonging to one of the components--we will always choose 
this to be the good conductor. This necessitates solution of Kirchhoff's 
equations for the network. A simple and commonly used method to achieve 
this goal is to find the site potentials V k that satisfy 

Z~ go( Vk +a-- Vk) 
Vk-- (3.~) 

Z a g a  

using relaxation ~13) or sparse matrix inversion (14) techniques. Here a are the 
lattice vectors from each lattice point to its nearest neighbors, and ga is the 
conductance of the bond a. These methods suffer from various problems: 
Although the computer programs needed are quite simple, the convergence 
can be very slow, especially when the lattice is close to the percolation 
threshold of the conducting bonds. One also has to first identify and 
eliminate all the isolated clusters of conducting bonds, since the potential 
of such a cluster is undefined. Furthermore, much computer memory is 
needed, particularly for the inversion method: For  a network with n sites 
one needs to store and invert a matrix of size n >< n. 
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An alternative approach for finding the total conductance is the node 
elimination method, (15'16/ in which one first eliminates the dangling ends 
and isolated clusters of conducting bonds. One then transforms the 
network into a simpler one using the star-triangle and other, similar trans- 
formations. The method is highly sophisticated and time consuming. It is 
not immediately clear whether this approach can be usefully extended to an 
evaluation of all the relevant site potentials. 

In the course of the present study, we have developed a new method 
for the calculation of the site potentials. This is based upon the transfer 
matrix method, (11'17) which has previously been used successfully for the 
calculation of the conductance of a network without solving for the site 
potentials. We will first briefly review the transfer matrix method and then 
describe the modification which allows an accurate calculation of the site 
potentials. 

Assume that we have a network of resistors as shown in Fig. 3a. Each 
bond may have an arbitrary (including zero) conductance. If each of the 
right-hand sites is connected to an external voltage, then due to the 
linearity of Kirchhoff's equations, we expect a linear dependence of the 
currents Ii on the voltages Vi. This dependence can be expressed using an 
admittance matrix A as 

Ii = ~ A~ Vj (3.2) 
J 

Addition of another layer of resistors changes the matrix A to A', which 
can be calculated exactly and quite simply. The conductance G of the strip 
between the two equipotential plates is found by setting all Ik = 0 (k ~ 1) 
and calculating the ratio I1/V1. In practice, the easiest way of doing this is 
to add one more layer of zero conductors at the end of the strip. 

If the resistors are chosen from a random distribution, the conduc- 
tance per unit length G/Lz of a strip with L~ layers obviously fluctuates for 
small Lz, but approaches a limiting value for large enough Lz (Lz~> 3, 
where ~ is the correlation length of the random network). Thus, an impor- 
tant advantage of this method over other methods is that one achieves a 
natural self-averaging by building longer strips, without having to worry 
about which quantity to average (conductance, resistance, or any function 
of either). 

Although this method allows an exact calculation of the conductance 
of a network without having to identify and eliminate the isolated clusters 
or dangling ends of conducting bonds, it does not yield the site potentials. 
However, a simple modification of the method enables us to calculate 
those, too. 

In order to calculate the site potentials at the nth layer (perpendicular 
to the zdirection), we build the network, starting from both ends and 
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x/• z 
/ 

r ' - -  N . - -  ~ 

I z  

V 
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w 
I 3  

V4 
k = .ii F 

T4 

(a )  

_L 

V ,  

2 
7 -  

L 

J_ 

N 

n-I n n 
I 

-~" VexF Vex ~. .L 0 

,~, v, I, v~I I 
V, 

v2 rz vzI~ 
"'" V2 

n+l n + 2  N - I  N 

I ~/H 

i 

V 2 g ,, 2,..~. 

( b )  

Fig. 3. (a) A 2D strip network of width L x = 4  and length L_~=6 in the x, zplane. The 
external voltage is applied between the upper and lower edges of the strip. The relation 
between the external voltages V i and the currents I i is given by (3.2). A 3D strip network is 
treated in the same way by adding another dimension Ly perpendicular to the plane of the 
figure. (b) A 2D strip network that is split up at the nth layer into a left subnetwork, built 
up starting from the left edge and characterized by an admittance matrix A (li=~_~j A o Vj), 
and a right subnetwork, built up starting from the right edge and characterized by an admit- 
tance matrix B (I} = Z j  B~ Vj). The sum of currents flowing into corresponding terminals of 
the two subnetworks must vanish, Ii + I[ = 0 for i # 0, but I 0 + I ;  = Iex t. 
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ending up at that layer, in the manner described previously. The two sub- 
networks thus have the sites of the nth layer in common. The admittance 
matrices for the left and right subnetworks will be denoted by A and B, and 
the currents entering them by Ik and I~, respectively (see Fig. 3b). Since no 
external current flows into the internal sites, we can write Ik + I~ = 0 for all 
k r 0, while Io + I ;  =/ext' In this way we get a set of equations 

( Ak, + Bk,) V, = Ie• (3.3) 
l 

which can be solved numerically to yield all the site potentials in that layer, 
as well as the total voltage across the network Vo, in terms of the external 
current Ie• In practice, what we did was to omit from (3.3) the equation 
for k = 0, and assume Vo ( =  Vext) = 1. We then solved the more limited set 
of equations 

(Akt + Bkt) Vt = --Ako--  Bko for k ~a 0 (3.4) 
lv~O 

in order to determine the remaining Vk. 
In the case that the bad conductor is a perfect insulator, we should 

remove all the isolated clusters from the network before attempting to 
invert the matrix A + B, since the potentials on those clusters are indeter- 
minate. This can be done by first building up the entire network with the 
same set of random numbers and identifying the sites that are connected to 
at least one of the external plates by using the Hoshen-Kopelman (18) algo- 
rithm. This information is kept on a separate file and used while solving 
(3.4). 

Another way to calculate the V~ of the nth layer is to use only one of 
the admittance matrices at the nth layer, say A of the left subnetwork, 
together with the voltages calculated for the next layer to the right, n + 1. 
We must now solve the equation 

AklVt  = gk(V'k -- Vk) (3.5) 
l 

where V~ is the voltage at the site k of layer n + 1. The rhs of this equation 
is the current Ik entering the kth site from the right subnetwork. 

Whereas both of the methods described above lead to good (and also 
identical) results, the following method does not: When one knows the site 
voltages on layers n + 1 and n + 2, V}, and V~', respectively, one could 
calculate explicitly the current I~, flowing out of the site k of the right sub- 
network. Equating that to the rhs of (3.5), one would then be able to solve 
for Vk. This procedure is the discrete network equivalent of solving 
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Laplace's equation with initial conditions on the potential, as well as on its 
normal derivative. As such, it is well known to be unstable: Any small 
deviation from the exact solution is quickly amplified and one rapidly 
attains values of the potential that diverge exponentially fast with distance 
along the zdirection of the strip. (In mathematical jargon, Cauchy's 
problem with Laplace's equation is "ill-posed.") By contrast, (3.5) is the 
discrete analogue of a first-order linear differential equation for the poten- 
tials V k as functions of z. Since A is a nonnegative matrix, the equation has 
no runaway increasing solutions that can lead to amplification of small 
errors. Therefore, the solutions of (3.5) for Vk can be expected to be stable 
with small and well-controlled numerical errors. These expectations have 
all been verified in simulations. 

It would require too much machine time to calculate the matrices A 
and B anew every time we moved to a new layer. We therefore calculate 
and store the matrices A from all the layers on a permanent file while 
building up the network in one direction. We then read them backward 
from the file when the network is being solved in the opposite direction 
using either (3.4) or (3.5). For  a network of cubic shape (i.e., Lx = Ly = Lz) 
this method works very well, However, if we wanted to implement the algo- 
rithm for a long strip network in which Lx ,~ Ly ~ Lz, this would require 
too much memory. We could then compromise between time and memory 
limitations by storing the matrices A only for every mth layer. We would 
thus divide the strip into N/m blocks, in each of which we know the 
A matrix at the first layer. In order to calculate the potentials within each 
block, we would read the A matrix of the first layer and calculate the 
A matrices of the remaining m -  1 layers of the block, storing then tem- 
porarily in another file. We would then solve for the site potentials starting 
at the other end of the block and using either (3.4) (in that case we would 
have to find the B matrix at each layer, but that could be discarded when 
we moved to the next layer) or (3.5). The two files that must be used have 
sizes proportional to Lz/m and to m, and their combined total size is there- 

fore minimized by choosing m = x/-~-  We would then need to store only 
2 ~ instead of Lz admittance matrices. The price paid is a doubling of 
the time spent in calculating the A matrices, since most of them would have 
to be calculated twice. The effect on the total amount of computer time 
would be less drastic, however, since most of the time is spent on the 
matrix inversion, i.e., on solution of (3.4) or (3.5). 

The time spent on matrix inversion can in turn be reduced con- 
siderably by eliminating the dangling bonds from the percolating clusters. 
These are all the percolating cluster bonds that are not part of the back- 
bone and therefore carry no current and have zero voltage across them. 
This can be done by the method of burning. (19) If this is not done, our 
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method requires inverting a large number of LxLy x LxLy matrices. This 
may be contrasted with the matrix inversion technique of ref. 14, where a 
single matrix of order LxLyLz x L~LyLz must be inverted. Clearly, since 
our method does not have to use numerical matrix inversion at its outer 
limits, far greater accuracy can be achieved in the solution for the site 
voltages. 

We have used both (3.4) and (3.5) on different samples, and in a small 
number of cases we used both approaches on the same sample in order to 
check for consistency. In order to check the accuracy of each simulation we 
calculated the conductance G in three different ways, one of which does not 
depend upon the detailed voltage distribution: (i) From the admittance 
matrix of the entire strip, as described in the discussion following (3.2). (ii) 
From the total rate of production of Joule heat 

O = ~' ga V] (3.6) 
a 

Here Va is the calculated voltage across the bond a whose conductance is 
g~. (iii) By using the fact that the total amount of current passing through 
each layer parallel to the external equipotential plates must equal the total 
external current. Thus 

Iext=~gaVa=G (3.7) 
a 

Here the summation is over all the bonds whose direction is perpendicular 
to the plates, and the voltages can be either positive or negative. In all the 
cases, the agreement between the three calculated values of G was up to at 
least eight significant digits, indicating the accuracy of the method. 

4. RESULTS OF THE S I M U L A T I O N S  

A number of different models were simulated: An ensemble of class 1 
networks in the shape of a cube, i.e., Lx = Ly = L z -  L for L ~< 15, and an 
ensemble of class 2 networks, also in the shape of a cube, for L ~ 25. In 
order to avoid the errors which finite-size effects would introduce into any 
sequence of simulations with Pl -o Pc, we performed all calculations at Pc. 
The results then depend on the linear size of the network L. 

Originally we had also intended to simulate networks in the shape of 
a long strip, i.e., Lx = Ly ~ L z. Such networks have the advantage that they 
are self-averaging, namely, for a sufficiently long strip a unique answer is 
obtained for given Lx, Ly. Thus, there would be no need to consider an 
ensemble of samples and choose between different ways of averaging the 
results. Unfortunately, the self-averaging is attained rather slowly with 
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increasing Lz, and we found that the memory requirements of the algo- 
rithm we had developed (see Section 3) prevent us from handling strips 
that are long enough. 

For large enough L the asymptotic dependence of the Hall and Ohmic 
conductivities is a power law in L with exponents that are related to t, s, 
r, and g by means of finite-size scaling. For an ensemble of samples of 
given linear size L and a j a M ~ L  -~'+s)/v (in this section we use al, 2i to 
denote the conductivities of the poor conductor, and O-M, 2M to denote 
those of the good conductor; v is the correlation length exponent) the 
results for ~r e should cluster around two values, depending upon whether 
the sample does (regime I) or does not (regime II) percolate in the direc- 
tion of the average electric field 

O- M L - ' / v  I 
(4.1) 

O- e ~ L sly II at 

In the same ensemble, the results for 2 e are expected to cluster around 
three different values, depending upon whether the sample percolates in 
both directions perpendicular to H (I), in neither direction (II), or in just 
one of them (Ill). The expected behavior in each of these regimes can be 
deduced from the scaling form (6) 

�9 ~e--~. i  Ap~F{o-Jo-M~ (4.2) 
X =  )t M - -  "~I \ A p t + S ,  } 

by substituting L -I /v  for Ap and noting that the fields E~0e)(r), 
e = x,  y ,  r e  aM,  which appear in (2.8) scale with aJO-M as follows: 

f ( a j o - M )  ~ for rsbackbone E~oe)(r) (4.3) 
( ( a j o - M )  1 for r r backbone 

From (4.3) we deduce the following asymptotic forms for the Hall conduc- 
tivity scaling function F(z): 

fconst I 

F(z) ~ t~2 III II (4.4) 

and consequently the following behavior for X as function of L for p = p~: 

( L-~ /v  = L ( g -  2t)/v l 

X ' .  ~(O-1/O'M) 2 L (g+2s)/v 1I (4.5) 

( ( O . i / a M )  L ( g + s  - t)/v III 

822/58/1-2-2 
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If we normalize X properly with the help of a (x) and ~Y), the Ohmic con- 
ductivities in the two directions perpendicular to H (the averages of these 
conductivities should coincide, but for a specific disordered sample of finite 
size they will usually differ), we can make the expected critical exponents 
coincide in the three regimes 

2 

a_...._...~__~ X ~  L g/v I, II, III (4.6) (x) (y) lYe lYe 

Finally, we note that if 2z is small enough, namely if [see (2.14)] 

2, ( ly,'/2 
2 7  < L (2s+g)/v (4.7) 

\ lYe/  

then 

X -  ~ 2_s 
2M 

2 Re (4.8) ~ X  ~ - 
(x) (y) RM lye lye 

In this section we will always implicitly assume that (4.7) holds. If it does 
not, then all the results we present are still valid if we replace 2ff2M and 
Re/R  M by the lhs of (4.8). 

In the class 1, 3D models, each sample network in principle consists 
of a set of four simple cubic random bond networks that are electrically 
unconnected but strongly correlated. In using (B.16) to calculate 2 e it is 
easy to see that the sum separates into two parts--one involving two of 
these networks, the other involving the other two. Since the ensemble 
average or long strip average will be the same for all such pairs, it is 
enough to consider one pair, rather than all four networks, in each realiza- 
tion. In the class 2 models, every sample consists of just one, simple cubic 
(or simple square in 2D) independent random bond network. 

In order to calculate the voltage distribution in a given sample, we 
imposed an appropriate fixed potential at sites on two opposite boun- 
dar ies - say  the x, z sides. At sites on the other sides, instead of imposing 
a linear potential variation as required by (B.5), we imposed the condition 
that no currents flow into the system. This may cause some concern, since 
the boundary condition (B.5), whereby the potential is prescribed at all 
boundary sites, was used in deriving (B.16), which we will ultimately use 
to evaluate 2 e. However, the altered boundary condition will affect the 
detailed votage distribution appreciably only near the boundaries. Thus, we 
may reasonably hope that we may still use (B.16) to get accurate results in 
the limit of large L. 
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For samples of finite L, one should nevertheless consider the effect of 
these incorrect boundary conditions, as well as of the fact that an 
individual sample at p~ often has very anisotropic electrical properties, thus 
casting some doubt upon the use of expressions like (2.7), (2.8) [or their 
discrete analogues (B.15), (B.16)], (2.12), and (4.8). In the general case of 
an anisotropic sample, it follows from our boundary conditions that the 
Ohmic quantities which we compute ~ ) ,  a~ y) are really l/p . . . .  1/peyy , i.e., 
the reciprocals of two diagonal elements of the Ohmic resistivity tensor 
Pe-------(~e) -1" Similarly, the Hall quantity 2~ that we compute for a single 
sample using (2.8) or (B.16) is really just the z component of the full vector 
~ ,  which usually does not lie along H t[ z. If we had wanted to calculate the 
z component of the Hall resistivity vector R~ from a knowledge of Pe and 
~'e, we would have found (here we omit the subscript e for the purpose of 
clarity) 

Rz 2 =2~(px.~pyy-pxy)+ z~(p~ypy~-pyyp~z)+ )oy(p~ypx~-px~pyz) (4.9) 

for small H, instead of the result of (4.8), which we can now rewrite as 

R~ = ) 'e~P~xxPeyy (4.10) 

As far as the quantity 2~z is concerned, arithmetical averaging over the 
ensemble (which is what we used) should make things right because the 
other components 2~,  2ey will average to zero if the ensemble is isotropic 
or cubic. This remains true even if we average only over the partial ensem- 
ble corresponding to one of the groups of samples 1-4 of Fig. 5. 6 In this 
averaging process R~, R~y, Pe~, i# j ,  will also average to zero. The only 
remaining question is whether the average of the calculated R~ of (4.10) 

6 TO see this, consider what happens when a sample network is reflected through an x, z plane, 
i.e., along the y axis. Denoting the voltages of the original and the reflected network on 
corresponding bonds by Vi e), ~ ) ,  respectively, it is easy to see that 

V~'~= V~ y~, ~ ' ~ =  -V( ,  x), ~'(fl= - V ~  ~) for a[r y 

p~y~ = _ V(j), ~.~x) = V~X~, ~'~-'~ = - V~ ~ for a • y 

From this and from (B.14) it follows that 2~y and a~y both change sign for the reflected 
network. Since the original and the reflected network belong to the same ensemble, the 
arithmetic averages of 2~y and a~y must vanish, even when the average is restricted to one 
of the groups 1-4 of Fig. 5. Similar considerations can be applied to show that the last two 
terms of (4.9) also vanish. For example, in the product 2 w p ~ y p ~  , all three factors change 
sign under reflection along y, while in the product 2 w p ~ p ~  z only the last factor changes 
sign under reflection along z. 
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matches with the average of the true z component Re~ of (4.9). It can be 
shown that the last two terms of (4.9) average to zero separately in each 
of the groups 1-4 of Fig. 5 (see footnote 6). The average of (4.9) thus 
becomes 

(Re )  = (2ez(PexxPeyy-- pZxy.) ) (4.11) 

2 and this differs from the average of (4.10) due to the appearance of )~ezPexy, 
which does not average to zero. Since we did not calculate the off-diagonal 
element of the resistivity tensor P~xy, we could not calculate (4.11), but we 
expect that ).e~pZxy will scale with L in the same way as 2ezP~xxP~uy, and 
therefore that (4.11) will have the same critical behavior as (4.10). 

In order to verify this expectation, we also calculated Re in a different 
way: We first averaged the results for lip . . . .  1/peyy, ~v~z over all samples 
with a given L (in the case of the class 2 model this was done separately 
for each group 1-4 of Fig. 5), and then used (4.10) to calculate Re for that 
L. Since, in this averaging procedure, 2ex, 2ey, Pc,y, i # j, should all average 
to zero, (4.10) then yields the correct (average) value of Re. We shall see 
below that as far as the scaling behavior is concerned, the results of this 
procedure are in full agreement with those obtained by using (4.10) for 
each sample individually. 

4.1. Class 1 Cubic-Shaped Networks 

A single layer, perpendicular to z, of such a network with L = 3 is 
shown in Fig. 4. The network consists of two unconnected simple networks 
P and D (standing for primal and dual), one of which (D) is connected to 
the external world in the x direction, while the other (P) is similarly con- 
nected in the y direction. The x and y bonds in one layer of either P or D 
form a 2D independent random bond network, but there are strong 
correlations between P and D: The two simple square networks that 
appear in every x, y planar cross section are mutually dual. 

Applying an external potential difference in the y direction, we deter- 
mine the Ohmic conductivity ~e of the network P, as well as the detailed 
voltage distribution on all its conductors. Similarly, by applying a potential 
difference in the x direction we determine the conductivity creD of the 
network D as well as its detailed voltage distribution. The two voltage 
distributions are then used in (B.16) to calculate the Hall conductivity 2 e. 
When this is done for samples in which each conductor is either g~a = 1 or 
g~ = 0, and the fraction of ga~'s is equal to the percolation threshold, most 
of the samples (about 3/4)will have a zero value for 2e and for at least one 
of the two Ohmic conductances. However, if we assign a small but nonzero 
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Fig. 4. One x, y layer of a class 1 model showing the two electrically unconnected networks 
(solid lines and dashed lines). An x bond from one network is equal to the y bond from the 
other network that intersects it. Thus, the x and y bonds of both networks form a self-dual 
array. The z bonds from the two networks are uncorrelated. Clearly, the solid-line network 
determines a~ y~ while the dashed-line network determines a~ x). Both networks determine 2 e. 

value to g l ,  say g~ = 10 s, all three conduc tances  will have nonzero  values, 
and  we can always calculate  the Hal l  coefficent R e from [see (4.8)] 

~ e  HRe = (4.12) 
O'e fled 

The price pa id  for t ak ing  g t  r 0 is tha t  the transfer  mat r ix  calcula t ions  are 
slower:  W h e n  g l  = 0, the ca lcula t ion  is speeded up cons iderab ly  because in 
m a n y  cases most  of  the elements  of  the admi t t ance  matr ix  do  not  have to 
be u p d a t e d  even though  a new b o n d  is being a d d e d  to the network.  This 
occurs  whenever  the new bond  is being a t t ached  to a site that  is uncon-  
nected to any  o ther  site (see ref. 11). 

The  results of such a set of  ca lcula t ions  for an ensemble  of  cubic 
samples  of size Lx x Ly x L~ = 8 3 are  shown in Figs. 5a and  5b, where we 

exhibi t  plots  of In o e vs. In O'eD and  In 1 2 e l  V S .  HRe, respectively.  In  Fig. 5a, 
where bo th  axes are  logar i thmic ,  the poin ts  are bunched  into four very 
separa te  groups.  G r o u p  1 co r responds  to samples  where bo th  P and D 
percola te ,  g roup  2 to samples  where nei ther  percolates ,  and  g roup  3 (4) to 
samples  where only P (D) percolates .  Wi th in  groups  1, 3 and 4 there 
appea r s  to be no cor re la t ion  between the devia t ions  of  ae and aeD from 
their  average values,  and  the average value for a pa r t i cu la r  subne twork  
(P  or  D)  depends  only on whether  it percolates .  In  g roup  2 there appears  



I U  z 

i (~  ~ 

IC~ 4 

i O  S 

10 .4 

i 0  "7 

3 I 

(o1 

I l J I I I 

iO .7 i 0  "~ i 0  "s i 0  "4 i 0  "~ i0-2 

%o 

i 0  "L 

10 -2 

Cb) 

10 .4 

10 .6 

_ _  i 0  -m 

I 0  �9 

i 0  -~2 

iO -~4 

i 0  -~6 

" : ~ 0  I c  

Ib 

' '  ~ 3 ,  4 

I I I 
-5 0 5 IO ~5 

HR e 

Fig. 5. (a) Plot of lncr~vs, ln~eo for an ensemble of c lassl  8 x 8 x 8  samples: The four 
clusters of points 1-4 correspond, respectively, to samples where both subnetworks P and D 
percolate, where neither percolates, where only P percolates, and where only D percolates. 
Within groups 1, 3, and 4 there appears to be no correlation between the fluctuations of Ge 
and creD about their average values, while within group 2 there is some positive correlation. 
(b) Plot of In [2e[ vs. H R e  for the same ensemble. Note that )~e and Re are negative for some 
samples, even though ('~e) and ( R e )  are always positive. The bottom cluster corresponds to 
group 2 of (a). The top cluster contains samples coming only from group 1 of (a). The middle 
cluster contains all the samples from groups 3 and 4 of (a), as well as those samples from 
group 1 (denoted as lb) that either have no binodes or have mutually canceling pairs of 
binodes. In the top cluster we have denoted by la the generic samples, and by lc those that 
result in R e = L = 8. 
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to be some correlation between those deviations. This is apparent from the 
skewed shape of the distribution of points. This correlation is probably due 
to the great sensitivity of a nearly percolating network to close encounters 
between different clusters, and hence to local enhancements of the fraction 
PM of the good conductors. 

In Fig. 5b, where only the 12el axis is logarithmic, the points separate 
vertically into three main groups. While those groups differ greatly in their 
values of 2e, they all span similar ranges in R e. The samples that contribute 
to the lower group are those that formed group 2 in Fig. 5a--the doubly 
nonpercolating samples. The samples contributing to the upper group are 
those from group 1 (the doubly percolating samples) that have binodes, i.e., 
points of intersection between the backbone of P and that of D. This group 
is denoted by la. The contributors to the middle group are all the samples 
from groups 3 and 4 (the singly percolating samples) plus those samples 
from group 1, called lb, that either lack binodes or have binodes whose 
contributions cancel each other (see the discussion below). 

In the upper group there is a concentration of points, called lc, at 
H R  e = L = 8. This comes mainly from samples where the percolating back- 
bone in both P and D is composed of one singly connected chain, and 
these intersect at a site where both currents are in the x - y  plane. Such an 
intersection is called positive if the currents are either both in the positive 
direction or both in the negative direction, thus making a positive con- 
tribution to 2e. Otherwise, the intersection is called negative. (Note that 
even though the ensemble average of •e or R e is positive, an individual 
sample can lead to negative values.) Denoting the lengths of the two chains 
by ~e  and 5f o, the Ohmic conductivities are 

1 1 
t r e = L ~  P, ff e D - - L ~  D (4.13) 

whib the Hall conductivity and Hall coefficient are easily seen to be 

1 
2e= ++-L.LPeL~'D' R H e =  + L (4.14) 

The same result is obtained even if the backbone of the second subnetwork 
is made of more than one singly connected chain, but each of these has one 
intersection with the single chain in the first subnetwork and the inter- 
sections are all either positive or negative. If there are equal numbers of 
positive and negative binodes, a cancellation occurs and such samples also 
contribute to the subgroup lb of Fig. 5b. In practice, this concentration of 
results at HRe = L was not observed for L > 10. 
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In order to analyze these results using finite-size scaling, we note that 
even though the he values separate into three groups that differ by many 
orders of magnitude and should also scale differently with L, the values of 
Re are all concentrated in one group and should scale in the same way [see 
Fig. 5b and (4.5), (4.6), (4.8)] 

2 2e 
Re __ ff M Lg/V (4.15) 
R M  aeaeD AM 

when 

aZ ~L-~t+s)/~ and ~M'~(6I~2L(2S+g)/v 
aM \aM/ 

However, since the coefficient of proportionality that is implied in (4.15) 
need not be the same above and below Pc, we analyzed the results for 
)~e/2M and Re/RM separately for the groups 1, 2, and 3 + 4, as well as for 
all the groups together. When treated separately, those three groups yielded 
the values (see Fig. 6a) 

~0.41 +_ 0.05 

g/v = ~0.26 + 0.03 

(0.28 + 0.05 

group 1 

group 2 

group 3 + 4 

(4.16) 

These results were obtained by first calculating R e for each sample using 
(4.8) or (4.10) and then averaging over the ensemble. We also calculated 
(Re) by first averaging lip .... 1/Peyy, 2ez over the samples in each 
group 1-4 of Fig. 5 and then using (4.10). The results for g/v were the same. 

In Fig. 7, we also plot the values of ln (2e)vs .  In L, from which we 
obtained a direct calculation of the critical exponent r = 2t - g, 

r/v = 4.3 _ 0.2 (4.18) 

Obviously, in this calculation only the samples of groups la and lc make 
a contribution. Finally, in Fig. 8, we plot the Ohmic conductivities ln(ae) 
and ln(aeD) vs. In L, and obtain for the critical exponent t 

t/v = 2.29 _+ 0.04 (4.19) 

g/v =0.31 +0.04 all groups (4.17) 

and the coefficient of proportionality was different in each case. We then 
introduced a multiplicative factor for the group 2 results and another one 
for the group 3 + 4 results, which were adjusted to bring them as much as 
possible in line with the group 1 results. In this way we found (see Fig. 6b) 
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Fig. 6. (a) Plots of In((Re)/RM) vs. In L separated according to the degree of percolation: 
The top points come from averages of R e o v e r  doubly percolating samples (group 1 of 
Fig. 5a), the middle points come from singly percolating samples (groups 3 + 4), the bottom 
points come from nonpercolating samples (group 2). The straight lines are weighted least- 
squares fits to the respective data, where the weight of each point is the reciprocal of the 
estimated error. The error bars in this and in all subsequent figures are obtained by dividing 
the rms or standard deviation of each point by x/~, where n is the number of samples used 
to calculate that point. (b) Same as (a), but now all samples are considered together after 
renormalizing the two lower sets of points from (a) by appropriate multiplicative constants. 
The straight line is a weighted least-squares fit. 
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The good agreement of this result with previously published values (17) of 
t/v gives us confidence in the accuracy of the simulations and their analysis. 

The fact that the values of g/v obtained from the different groups of 
samples seem to be somewhat different, even though the scaling theory 
predicts that they should agree, may arise from the following causes: (a) 
These simulations were all done at Pc = 0.2492, which is correct for an 
infinite network. For finite networks, if pc is defined as the value ofp  where 
half of the samples percolate, then p~ depends on L and only approaches 
the above value asymptotically/z~ (b) In those samples in which 2 e and 
either ae or aeD (or both) are small, the precise values depend on the 
voltages across conducting (aM) bonds that form finite clusters. Those 
voltages are very small [-i.e., of order at~aM--see (4.3)J and are obtained 
as differences between the large but nearly equal potentials at their ends. 
Thus, their accuracy is considerably lower than that of the voltages on 
bonds of the percolating backbones which determine the conductivities in 
samples where 2e, a~, ~r~o are all large. 

As a byproduct of these simulations, we also obtained the density of 
binodes PBN----NBN/N in our samples; this is plotted in Fig. 9 vs. L on a 
log-log plot, and leads to the conclusion that 

RBN ~ L b, b = 2.2 + 0.1 (4.20) 
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Fig. 9. Plot of In (PsN),  the density of binodes in cubic-shaped class 1 samples, vs. In L. The 
straight line is a weighted least-squares fit. 
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On each of the networks P and D the density of backbone bonds at Pc 
should behave as L DB- d, where d = 3 is the dimensionality of our samples 
and D8 = 1.77 _+ 0.07 is the fractal dimensionality of the backbone. (19) If the 
two networks were uncorrelated, we would expect PBN to be the square of 
the backbone density, i.e., 

P BN ~" L- =(a- DB) 
(4.21) 

2 ( d -  DB) = 2.46 H- 0.14 

The fact that b is somewhat smaller than that should therefore be ascribed 
to the positive correlation between the backbones of P and D. That  is, 
when a bond a belongs to the backbone of P, then not only is its inter- 
secting bond ~ a conducting bond of D, but in its neighborhood there are 
more conducting bonds of D than would be present near a conducting 
bond chosen at random. From (4.20) we conclude that the fractal dimen- 
sion of the set of binodes is 

DBN=d--b=0.8+O.1 (4.22) 

4.2. Class 2 Cubic-Shaped Networks  

An ensemble of samples was simulated for each value of L ~< 25 in 
order to calculate (2e ) ,  ( a e ) ,  and (Re) .  Each sample was an indepen- 
dent, random bond, simple cubic network. An x, y layer in such a sample 
is shown for L = 4 in Fig. 10. A total of L such planes are stacked per- 
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J I  . ,  , ,  , ,  I J  
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Fig. 10. 

PLANE B 
One x-y layer of a class 2 sample of linear size L = 4. The total number of layers 

stacked together to form the entire network is also L. 
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pendicular to the z axis, so that the linear size in that direction is also L. 
In order to calculate the voltage distribution when the average electric field 
is the unit vector ey, we thus apply a potential difference equal to L 
between the x, z sides of the network. 

Another point to consider is what value we should use in (B.16) for N, 
the total 3D size of the system. We used the value that gives the correct 
answer [namely, ( 2 e -  21)/(2M- 2 : )=  1 ] for the uniform network, namely 

N;. = L ( L  - 1 )2 (4.23) 

We also calculated the conductivity cre in such a way that the correct 
answer was regained for the uniform network, for example 

L G e 
a e - - -  G ~ -  (4.24) 

L ( / . -  1) L -  1 

where G e is the total conductance. Note that if we use (B.15) to calculate 
this conductivity, we must use a different value of N, namely 

N~ = L 2 ( L  - 1) (4.25) 

in order to get the right answer for a uniform network. 
In order to determine asymptotic critical behaviors, all the samples of 

size L were produced with the help of a quasirandom-number generator 
using an occupation probability for individual bonds equal to (2~ 

p c ( L ) = O . 2 4 9 2  +O.O71L l/v + 1.25L-2/v,  v=0.88 (4.26) 

This is the percolation threshold adjusted for the particular value of L, i.e., 
at p = p c ( L )  one-half of the samples produced in a large ensemble percolate 
in a given direction. 

Finally, in order to look for power law behavior in (~re), (2e) ,  ( R e )  
as functions of linear size, we had to choose an appropriate linear size: 
Because of the nature of our samples, there is some ambiguity in this choice 
and one may use either L or L -  1, or some other intermediate value such 
as N~/3 or N ~/3~. . We have chosen to use L. While this will not make any dif- 
ference for large L, it may affect the calculation of power law exponents at 
finite L. 

The results for ( a e ) ,  (2e) ,  ( R e )  vs. L are plotted in Figs. 11-13 on 
a log-log scale. In plotting (Re) ,  we only used doubly percolating sam- 
ples, since in these calculations we put gz = 0 [compare with the discussion 
preceding (4.12)]. In Fig. 14 we also plot the total number of backbone 
bonds N~ (i.e., the total number of current-carrying bonds) vs. L. The 
expected dependence of NB on L is NB ~ L DB, where De - 1.77 + 0.07 is the 
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Fig. 11. Plot of ( � 9  ln(<cr~ ~) >/aM) and ( A ) ln(<a~Yl )/aM) for class 2 cubic-shaped samples 
vs. In L. The straight line is a weighted least-squares fit. The number  appearing next to each 
pair of points is the total number  of doubly percolating samples used to calculate that pair. 
The same samples were also used to calculate the points in Figs. 12-14. 
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Plot of In NB, the size of the backbone, vs. In L for class 2 cubic-shaped samples. 
The straight line is a weighted least-squares fit. 

fractal dimension of the percolating backbone.  (~9) F r o m  these results we 
determined the following values for the critical exponents 

D 8 = 1.72 -I- 0.02 

t/v = 2.37 + 0.02 

r/v = 4.35 _ 0.04 

(g/v)~ = 0.42 + 0.03 

(g/v)2 = 0.40 _+ 0.05 

(4.27) 

where the two values for g/v were obtained by using different procedures 
for the calculation of ( R e ) :  (g/v)1 was obtained by using (4.8) or (4.10) to 
calculate Re for each sample, then Re was averaged arithmetically over all 
samples for given L. The value of (g/v)2 was obtained by using (4.10) with 
the (arithmetic) average values of lip . . . .  1/peyy, 2ez, as explained earlier in 
this section. These values and errors were obtained by a weighted least 
squares fit. The fact that  our  value for D8 is in good  agreement with the 
above quoted result can serve as some indication of  the accuracy of our  
results. The fact that  our  value for t/v is a little higher than the result 
t/v = 2.2_+ 0.1 of Ref. 17 may be due to the fact that  we included only the 
doubly percolating samples in our  calculation. 
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5. S U M M A R Y  A N D  D I S C U S S I O N  

We have described extensive simulations made for the purpose of 
studying the critical properties of the weak-field Hall effect near a percola- 
tion threshold. Two different network models were used that lead to the 
correct behavior of the bulk effective Hall coefficient Re in 2D systems, as 
known from an exact theorem. In 3D systems these models yielded the 
following results regarding the critical behavior of Re: 

R e ~ Lg /v  

g/v =0.41 __+0.05 for class 1 model (5.!) 

g/v = 0.42 + 0.03 for class 2 model 

Here we have quoted the result from the class 1 model only for doubly per- 
colating samples, which are also the only kinds of samples that were con- 
sidered for the class 2 model. In order to obtain reliable results from the 
other types of samples, we would need to analyze carefully the errors 
incurred in calculating the very small voltages on conducting bonds that do 
not belong to the backbone. It is actually possible to do this with the help 
of the algorithm described in Section 3, which enables us to find all the 
bond voltages with unprecedented accuracy. This is currently being studied 
in connection with the detailed voltage distribution on bonds of these 
networks and will be discussed elsewhere. (~2) A certain discrepancy appears 
if we compare the above results to those of ref. 8, where it was found that 
g = 0.29 + 0.05, which translates to (v = 0.89 + 0.01; see ref. 21 

g/v = 0.33 + 0.05 

Other recent calculations also lead to a value for g/v that is not in very 
good agreement with our results. (22) 

Some of these discrepancies can probably be ascribed to systematic 
errors that are not included in the quoted errors--those include statistical 
errors only. Systematic errors may arise from the use of incorrect boundary 
conditions, from using an incorrect linear size L to characterize the finite 
samples, or simply from using values of L that are not large enough to 
ensure correct asymptotic behavior. Some of these problems can perhaps 
be alleviated by performing the simulations at p=pc(L) [see (4.26)] 
instead of at p=pc (oo ) .  This was recognized too late to be used in the 
class 1 model, but was implemented in the class 2 model. The results from 
ref. 8 probably suffer from systematic errors due to finite-size effects, since 
those calculations were done on networks at p # Pc. 

Another annoying feature is the apparent discrepancy between values 
of g/v obtained from class 1 samples with different percolation charac- 
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teristics. If true, this would violate the scaling theory predictions. We 
believe that these discrepancies are again due to the use of a fixed value for 
Pc rather than pc(L), as well as to the errors associated with calculating the 
very small bond voltages which we alluded to before. 

It would be highly desirable to develop a network model for the Hall 
effect that is not restricted to weak magnetic fields and that does not suffer 
from the appearance of unphysical binodes. Such a model might serve not 
only to get better results for the weak-field exponent g, but also to perform 
simulations of the Hall effect and magnetoresistance in strong magnetic 
fields. Such a model has recently been suggested, (23~ and will be used to 
perform further studies. 

A P P E N D I X  A. THEORY OF THE LOW-FIELD HALL EFFECT IN 
A C O N T I N U U M  C O M P O S I T E  M E D I U M  

In order to calculate the local electric field E( r )=  -V~b(r) in a con- 
tinuum composite medium in the presence of a constant magnetic field H, 
we must solve a boundary value problem with a linear partial differential 
equation 

0 = V" J(r) = - V .  a0[ 1 - u0(r)] V~b(r) + V" [L(r) • V~b(r)] 
(A.1) 

~b(r) = ~b0o(r) on the surface of the sample 

We should think of the composite as comprised of n + 1 isotropic com- 
ponents, each with its own Ohmic and Hall conductivities ai, ki ql H, i = 0, 
1, 2,..., n. In (A.1) we have artificially separated out the ~o component and 
are treating it as the host. With the help of the characteristic step functions 

Oi(r) = { 10 if rotherwiseiS inside the ai component (A.2) 

we can write 

= cr0[1 - u0(r)] (A.3) 

which serves to define the function u0(r) that appears in (A.1). The function 
~boo(r), which provides the boundary values of ~b(r), will always be taken to 
be a solution of Laplace's equation that leads to a uniform electric field of 
unit amplitude, e.g., 

~b~)(r) = - e .  r (a.4) 

E ~  ) =- -V~boo = e 
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When this boundary condition is chosen, the solution of (A.1) is denoted 
by ~b(e)(r). The resulting current density [see (2.1)] is then denoted by 
J(e)(r), while the solution of (A.1) in zero magnetic field, i.e., when k(r)_= 0, 
is denoted by ~b(oe)(r). 

With the help of the Green's function G(r, r'tuo), defined by 

V. [1 - u o ( r ) ]  VG(r, r ' ) =  - 6 d ( r -  r') 
(A.5) 

G = 0 on the surface of the sample 

(d is the dimensionality, in practice either d =  2 or d =  3), we can transform 
(A.1) in the usual way to a linear integral equation for ~b, 

r = r  f dV ' G(r, r ' ) V ' .  [~(r') x V'~b(r')] 

=(~o(r)- l  f dv'k(r').[V'G(r,r')xV'(k(r')] (A.6) 

where ~bo(r) is the solution of (A.1) for ~.(r)-  0. The last line of (A.6) was 
obtained by integrating by parts and using the boundary condition G--0. 

Before continuing, we note that Go, which is simply G for the case 
when a(r) - ao, i.e., u0(r) - 0, 

Go(r, r ') _-- G(r, r'[uo - 0) (A.7) 

can be used to write integral equations for ~bo(r ) and for G itself: Starting 
with the boundary value problem (A.1) with k ( r ) - 0 ,  we can transform it 
in the usual way to 

1 
f dV' Go(r, r') V "  [aoUo(r') V'~bo(r')]  o(r) =  oo(r) - Oo 

= ~boo(r) + f dV' uo(r') V'Go(r, r ' ) .  V'~bo(r' ) (A.8) 

In the same way, the problem (A.5) can be transformed into 

Go(r, r') + f dV" uo(r") V"Go(r, r") .  V"G(r", r'luo) (A.9) G(r, rl ]/go) 

Defining the linear operators F, Fo by 

I f =  f dV' uo(r') V'G(r, r'luo)" VZ(r')  

(A.10) 

Fof = - f dV' uo(r') V'Go(r, r ' ) .  V~f(r') 
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for an arbitrary function f(r) ,  we can rewrite (A.8) and (A.9) symbolically 
as 

r = r + Vor 
(A.11) 

G=Go + FoG 

and consequently also 

F= F o + FoF (A.12) 

These equations may be solved symbolically to yield 

1 
r - r 

1 - F o  

1 
F = 1 - F o F~ 

(A.13) 

and hence 

r = (1 + F )  r (A.14) 

Since both and G and Go are symmetric in their arguments, both F and Fo 
are self-adjoint when Uo is real. 

Equation (A.6) can be solved to first order in H by replacing r on 
the rhs by r When this is substituted in (2.1), the volume average of 
the component of J(e)(r) along the unit vector f can be written, up to order 
H 1, as 

( J ( e )  �9 f )  = ( - a(Vr �9 f )  ) 

+ L  f dV [ i -  uo(r)](f" v)  f dV' ~(r'). [V'G(r, r') x Vt~b(e)(r')] 
v 

"}- <(L, V~(O e), f)> (A.15) 

where we have introduced the notation (a, b, e ) - a "  (b x c) for the triple 
scalar product of three vectors. In the second term on the rhs of (A.15), the 
integration over r may be performed explicitly by noting that 

f dVVG(r, r') = 0 (A.16) 

because G = 0 on the boundary, and that, due to the symmetry of G, 

--f dV uo(r) f .  VG(r, r') = =r',~ (f) = v ,  oo ~b(o f ) -  voo'~(f) (A. 17) 
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where we also used (A.14). The second term on the rhs of (A.15) thus 
becomes 

if dV k(r).  [V(~b (o y } -  ~'oo'~(f)~, A," --vOV'a(e)l- 

= - ( ( k ,  V~b(o e), f ) )  - ((k, V#(f ), V~b(of))) (A.18) 

The first term on the rhs, which was obtained by noting that XT,~(Y)- _f, --W O0 -- 

clearly cancels the last term of (A.15). Putting all this together with the 
definitions of ~ and ~.~ [see (2.3)] and separating the orders H ~ and H ~, 
we finally get 

e . ~  e �9 f =  ( a ( -  V~b(f )" f ) )  (A.19) 

(kr e, f ) =  ((k, V~bCo e), V~b(od))) (A.20) 

These expressions may be further transformed by noting that 

( ( - V q ~ ( o e )  " f ) )  = e ' f  

1 f dV(VO(o • ( (V(~(o e) X V ~ ( f ) ) )  = "~ 
(A.21) 

= ~ ( e ) ~ [ 7 ~ ( f ) l _  1 ~(e)l[7~(f)~ 

= ( ( - e  x V~b(of~))= (e x f) 

and by writing 

a(r)=~o+ ~ (a~-ao) G(r) 
i~  1 (A.22) 
/ 7  

~.(r) = ~o + ~ (ki-  ~o) 0i(r) 
i = l  

When these are used in (A.19) and (A.20), we get 

e" ~e" f -  ~ f) = ~ ( a i -  r --f" V~(o ~) ) (A23) 
i=1 

()~e--ko, e, f ) =  ~, ( k , - k o ) "  (O+(V~{oe) xV~of))) (A.24) 
i=1 

Up to this point we have made no assumptions regarding any sym- 
metries of the microgeometry. If we assume that the microgeometry has 
either isotropic or cubic point symmetry, then the Ohmic conductivity 
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becomes a scalar tensor (ae)~= aebij while the Hall conductivity vector 
becomes proportional to H for small H. In the case of a two-component 
composite we can then get especially simple results by choosing e = %, 
f = e y ,  Hllez: 

(O~b(~ \ (A.25) Ge-- a0 = 0~ --~--X / 
o- 1 - -  o -  o 

")'e -- ~0 = < 0 l(V~ (0 x) X V~ (0Y))z) (A.26) 
,~ - 2 0 

Note that the rhs in both equations depends, apart from the 
microgeometry, only on the ratio of Ohmic conductivities ~1/o- 0. 

APPENDIX B. DISCRETE NETWORK MODELS FOR THE HALL 
EFFECT IN A COMPOSITE M E D I U M  

The models we will consider are all cubic (square in 2D)--each bond 
a lies along one of the coordinate axes x, y, z (x, y in 2D). The voltage 
across it Va, which can be either positive or negative, represents the com- 
ponent of E(r) along the direction of a. The components of E(r) that are 
perpendicular to the direction of a are represented by the voltages Va on 
neighboring bonds ~ that are perpendicular to a. The models differ in the 
way these voltages V~ are taken into account: In the model of ref. 3, the 
simple arithmetic average over V~ on all four nearest neighbor bonds poin- 
ting in the appropriate direction was used (see Fig. 2). In our class 2 
models this average is weighted by 0 or 1/4, so that only bonds of the same 
type as a contribute (see Fig. 2). In our class 1 models each bond is part 
of a basic unit (either a triplet or a doublet) of identical, electrically uncon- 
nected, mutually perpendicular bonds, and the only bond fi which con- 
tributes to the perpendicular field is another member of the same unit (see 
Fig. 1 ). 

The current in bond a is given by 

Ja=gaV~- ~ 2a~V~(eH,'5, a) (B.1) 
~Ea 

where the precise meaning of the summation symbol depends on the model 
under consideration. The vector eH is a unit vector in the direction of H, 
and the triple scalar product ensures that a Hall current can only be 
produced in a by ~ if H has a nonzero component perpendicular to both 
a and ~. With the help of the characteristic functions 

0ia = ~ 1 if a is a bond of type/  (B.2) 
u otherwise 
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we can write 

i = 0  i = O  

KirchholTs current conservation equations then become 

(B.3) 

0 = Z  J~+ Z go(1--Uoa) Va-- Z Z 2~aV~(e~,~,a) (B.4) 

where the first summation is over all the bonds a-= (tj) that meet at the 
lattice site i, and V~- = V,.-Vj. The boundary conditions on the site 
potentials Vi are taken to be 

V~ v ( ~ = .  �9 (B.5) ~ -  - - O O i  - -  * i  e 

where e is a unit vector and r~ is the position vector at the site i. The 
development now proceeds in complete analogy with that of Appendix A 
for the continuum case (see also ref. 7): Green's tensor y~ (=  7~) is defined 
by 

(1 t l - U o u ) ( ~ j -  ~ )  = - , 5 ~  
( i j )~ i  

7 t = 0 for i on the surface 
i 

(B.6) 

and using it, (B.4) can be transformed into 

1 t 
Vi= Voi + - -  ~ 7i ~ ~ 2,m.a V~(eH, ~, (lm)) (B.7) 

go T (lm)el gtE(lm) 

where Vo~ is the solution of (B.4) for 2aa-= 0. From this we can get the 
following equation for Va-  V~j =- V~- Vj, 

1 
va = Voo - - -  Y~ rob F~ ,lb~ V~(e,~, b, ~) (B.8) 

go b ~eb 

where 

_ _  l l m m 

F a b  ~- F ( i j ) ( lm)  = Y i - -  ~ j - -  Y i "~ ~ j (B.9) 

is the discrete analogue of the double gradient of the Green's function 
VV'G(r, r'). In order to get (B.8), we subtracted the equation for Vj from 
that for Vi and then switched the names of the dummy indices l, m, noting 
that (ml) = -(Ira). We again define 7~i as 7,g. for the homogeneous network, 
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i.e., when Uo, = 0, and similarly Foa b. The linear operators F and F 0 are 
defined by 

(FV)a =- E FabUOb Vb 
b (B.lO) 

(Fo V)a = E FOabUOb Vb 
b 

and are easily shown to have the same properties as the corresponding 
operators of Appendix A: 

V (e) V ( e )  -.I- E F '  , ,  i/*(e) (B.11) a O a b  t40b --Ob --Oa --OOa 
b 

or symbolically, in analogy with (A.11)-(A.14), 

V~Oe'= V'O; ) + ro V'o e) 

r =  ro + r o r  

1 
V(o e> = - -  V(~o ) 

I - F o  

i 
F -  Fo 

1-Fo 

V~oe> = (a + r )  v~> 

(B.12) 

The bulk effective uniform individual bond conductances ge, )Le a r e  now 
defined and calculated by considering the individual bond current and 
voltage averaged over all bonds of the network: 

( f .  j(e))-=x~ ~a J(e)(f" a) 

= e" ge" f -  ~'e(e., e, f) (B,13) 

Performing manipulations similar to those of Appendix A, we finally get 

. f 1 e ' ge "  = ~  g~V(oe~)(f'a) 

(B.14) 

f 1 (Ze ,  e, ) = ~  ~ 2a~V(C2V(L)(e,_,, ~, a) 
a 5~a 

Usually we will choose e, f, and eH to lie along the coordinate axes. 
As in the continuum case, we can eliminate the summation over bonds 

belonging to one of the components, which can then be thought of as the 
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(o) host medium go, 2ao. In the case of a two-component medium with 
isotropic or cubic point symmetry we are thus led to the results 

g+-  go 1 v(x),. (B.15) 
gl -- go N ~ ex 

a ~ g l  

2 e - 20 1 r/(+) v(y)ro fi) (B. 16) 
- -Oa  - - 0 ~  k ~ x '  2 , - 2 0  N ~ 2 a, a,~ t~  g I ~ t ~ a  

, (i) _ where we have taken Hl[e~ and therefore ,%~-/~i if a and fi are per- 
pendicular adjacent bonds in the x, y plane, while 2~ = 0 otherwise. The 
sums are restricted to bonds of type 1. In the case of the class 2 models, the 
rhs of (B.16) should be multiplied by an additional factor of 1/4. 

APPENDIX  C. THE DUALITY T R A N S F O R M A T I O N  IN 2D 

In a two-dimensional composite made of isotropic components and 
lying in the x, y plane, with H[p ez, the duality transformation consists of 
rotating both E(r) and J(r) by 90 ~ in that plane. They then become, 
respectively, J '(r) and E'(r), which are the correct (current and electric) 
fields for a new problem in which the conductivity tensor is W(r)= 1/~(r), 
with 

(Note that throughout this Appendix the conductivity and resistivity 
tensors include an antisymmetric part which represents the Hall effect.) 
This is shown by the following equations: 

J ' ( r )=  %x E(r)= (_01 ~) E(r) 

E ' ( r ) - e z x J ( r ) = ( _ 0 1  10) J(r) 

1 
J'(r) = ez x - ~  J(r) 

= ( 0 1  l ' ] ( a ( r )  2 ( r ) ) - ' ( 0  ; 1 )  E,(r) 
OJk-)+(r) a(r)) \1 

l 
= #ir) E'(r) 

V" J ' = V "  (e~ x E) = -ez" (Vx E) = 0 

V •  ( e ~ x J ) = e ~ ( V . J ) = O  

(c.2) 
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The only tricky point is that the new fields E'  and J '  may satisfy a different 
type of boundary condition as compared to E and J. This causes no 
problem if the system is homogeneous on the average, (24) or if the 
boundary conditions are chosen appropriately. (7) If the composite is 
macroscopically isotropic or cubic in its point symmetry, and if the bulk 
effective conductivity tensor 

is defined by the relation between the volume averages of d and E, 

then we clearly get 

( J )  = ~ ( E )  (C.4) 

<J '>  = ~;<E'> = ~e(1/~)(E'> 

We can also write 

1 0 
( J ' > = ( - 1  1 

1 
(E '>  

and hence 

~t  e ~ ~ e ( l l ~ )  : 1/~(~) 

( c . s )  

(C.6) 

(C.7) 

This exact result, which holds for arbitrary values of H, was first shown by 
Mendelson, (24) and was recently generalized by Milton. (2s) 

Specializing to the case of a 2D, two-component composite in a weak 
perpendicular magnetic field, we get 

1 
O'i-~.-- 

o" i 

2i for i = 0 ,  1, e (C.8) and 2; - a2 

21-2o = X  = X  (C.9) 

' ~ ; - x ; = x  =__x ( o l 0 )  

Substituting (C.8) into (C.10), and eliminating )~e between 
(C.10), we get the following equation: 

(;t~ - ; to) ~ -  2 - - -  -~ 

(C.9) and 

(C.11) 



Low-Field Hall Effect 41 

which must be satisfied for arbitrary values of 20, 2~. Therefore the coef- 
ficients of 2o and of 21 - 20 must both vanish, and we get 

2 2 
X, G1 Ge -- 0"0 2 

2 

G e  - -  (TO x , _ _  
<.12) 

which is the same as (2.9). 
In order to apply considerations such as these directly to the discrete 

network models, one has to rotate the bonds together with the currents 
and voltages. When this is done, a class 1 network transforms into itself, 
but a class 2 network usually transforms into a different network, especially 
if it is a random network. We shall see that this difference is also reflected 
in the applicability of the duality transformation. 

The rotated quantities J'a, V'a are defined as follows: 

J'a- <,  V'a--Ja (C.13) 

where the subscript a in the rotated quantities referes to the rotated bond 
a. When the bonds form a square network, it is easy to see that the rotated 
quantities have the necessary properties: Kirchhoff's current conservation 
equations for the J'~ flowing into a site follow from the fact that the sum 
of Va around any elementary square vanishes. Similarly, the sum of V'a 
around any elementary square vanishes due to current conservation of the 
J~ flowing into the node at its center. The next step is to try to express J'a 
in terms of V'a in a way that is reminiscent of (C.2). In order to do that, 
we must try to invert (B.1) into such a form, i.e., 

vo =roJo+ ~, Ro#~(e., ~, a) (c.14) 
~ a  

Substituting (B.1) into this equation, we get 

Va=rag~V~- ~, (ra2,~-Raaga) Va(eH, fi, a) 
a c a  

- -  ~, 2 Ra~),~a, V,,(eH, h, a)(eH, a', a) (C.15) 
~ G a  a ' ~  

Since this should be an identity, we must have 

R~  = r~ 2~ (C. !6) 
g~ 

~. R~)~,= A~faa, (C.17) 

~ E a '  
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where Aa remains to be determined, and where the summation is over 
bonds a in a given direction, and a[qa'. Substituting from (C.16) into 
(C.17), we get 

r__~ 2oa2a~' = AoSa~ ' (C.18) 
~ea gfi a~a' 

There is no way that this can be satisfied for class 2 models, or for the 
model of ref. 3. On the other hand, it is automatically satisfied for the 
class 1 models, where the summation is only over one bond. In that case, 
since all the bonds in one unit are identical, we find 

Aa = ra 2 - -  /~ a~ 

go 

Fa 2 
1 = r a g o + - - 2 a a  

go 

so that 

g a  

+ 

/~ati 
Roa ga2 + ,2 

Aa,~ 

(C.20) 

This is clearly analogous to (C.2), and consequently we recover the exact 
result of (C.7) for class 1 models of any size or composition. By contrast, 
in the case of the class 2 models we can only hope to recover the result 
of (C.7) in the continuum limit, i.e., when the network is very large 
and the randomness is correlated over distances that are large compared 
to the lattice parameter. Nevertheless, we now proceeded to show that 
in the low-field case we can do better. 

If we only need to keep terms of order H a and H 1, we can drop the 
last term in (C.15). In that case, the equation becomes an identity when 

r a =  1~go 
(C.21) 

R ~a = 2 aff  g ~ g a 

which is sufficient to reproduce the form of (C.2) in the low-field case. 
Consequently, the low-field limit of (C.7) is reproduced exactly for class 2 
networks of any size or composition, including especially the result (C.12) 
[or  (2.9)] for two-component networks. 
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